Weak Convergence of Orthogonal Polynomials

نویسندگان

  • Walter Van Assche
  • WALTER VAN ASSCHE
چکیده

The weak convergence of orthogonal polynomials is given under conditions on the asymptotic behaviour of the coefficients in the three-term recurrence relation. The results generalize known results and are applied to several systems of orthogonal polynomials, including orthogonal polynomials on a finite set of points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of New Geronimus Type Identities for Real Orthogonal Polynomials

Let be a positive measure on the real line, with associated orthogonal polynomials fpng. Let Im a 6= 0. Then there is an explicit constant cn such that for all polynomials P of degree at most 2n 2, cn Z 1 1 P (t) jpn (a) pn 1 (t) pn 1 (a) pn (t)j dt = Z P d : In this paper, we provide a self-contained proof of the identity. Moreover, we apply the formula to deduce a weak convergence result, a d...

متن کامل

Remarks on Orthogonal Polynomials with Respect to Varying Measures and Related Problems

We point out the relation between the orthogonal polynomials with respect to (w.r.t.) varying measures and the so-called orthogonal rationals on the unit circle in the complex plane. This observation enables us to combine different techniques in the study of these polynomials and rationals. As an example, we present a simple and short proof for a known result on the weak-star convergence of ort...

متن کامل

Zero Asymptotic Behaviour for Orthogonal Matrix Polynomials

Weak-star asymptotic results are obtained for the zeros of orthogonal matrix polynomials (i.e. the zeros of their determinants) on R from two di®erent assumptions: ̄rst from the convergence of matrix coe±cients occurring in the three-term recurrence for these polynomials and, second, from some conditions on the generating matrix measure. The matrix analogue of the Chebyshev polynomials of the ̄...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

2 9 Ja n 20 04 MEAN CONVERGENCE OF ORTHOGONAL FOURIER SERIES AND INTERPOLATING POLYNOMIALS

For a family of weight functions that include the general Jacobi weight functions as special cases, exact condition for the convergence of the Fourier orthogonal series in the weighted L space is given. The result is then used to establish a Marcinkiewicz-Zygmund type inequality and to study weighted mean convergence of various interpolating polynomials based on the zeros of the corresponding o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994